

Distributed Monitoring and Information Services for the Grid

Jennifer M. Schopf
Argonne National Laboratory
NeSC

Feb 20, 2006

What is a Grid

- Resource sharing
 - Computers, storage, sensors, networks, ...
 - Sharing always conditional: issues of trust, policy, negotiation, payment, ...
- Coordinated problem solving
 - Beyond client-server: distributed data analysis, computation, collaboration, ...
- Dynamic, multi-institutional virtual orgs
 - Community overlays on classic org structures
 - Large or small, static or dynamic

Why is this hard/different?

- Lack of central control
 - Where things run
 - When they run
- Shared resources
 - Contention, variability
- Communication
 - Different sites implies different sys admins, users, institutional goals, and often "strong personalities"

So why do it?

- Computations that need to be done with a time limit
- Data that can't fit on one site
- Data owned by multiple sites

 Applications that need to be run bigger, faster, more

What Is Grid Monitoring?

 Sharing of community data between sites using a standard interface for querying and notification

- A way to discover what services and resources are available to use
- A way to understand the status/attributes of those services
- A system to warn you when things fail

Monitoring Use cases

- PPGD/GriPhyN/iVDGL monitoring group (2002-2004) found roughly 4 categories
 - Health of system (NW, servers, cpus, etc)
 - Resource selection
 - System upgrade evaluation (have systems reached capacity)
 - Application-specific progress tracking
- First three types need roughly the same information
- Fourth is user-specific and application specific no general solution yet

http://www.mcs.anl.gov/~jms/pg-monitoring

the globus allia

"Health of the System "Is the Grid up?"

Brief Description

- User of a grid replication service finds actions are much slower than normal
- Not sure if problem is with network, disk, CPU end points, or something inbetween
- Need archive data for historical, current streaming for comparison

Performance events/sensors required

- Host monitoring CPU, memory, disk
- Network path monitoring bw, lat., traceroute
- GridFTP monitoring
- ◆ TCP stack monitoring (web 100)
- Possibly switch/router monitoring
- May want different data for user vs sys admins

Resource Selection

- Brief Description
 - User/Broker wants to decide where to run a job
 - Sites advertise cluster information for grid-level scheduling decisions
 - Also need data about storage locations and access speeds
 - Information must be summarized for advertising to Grid, scalability is key issue
- Performance events/sensors required
 - Static: number of compute nodes, cpu type and speed, OS, installed sw, available storage systems
 - Dynamic: Queue lengths, large file transfer times

the globus alliance www.globus.org What should monitoring systems look like?

- All sensors must be non-intrusive
- All data is small, and must be "as timely as possible"
- All data must be kept for a long time (years), and must be accessible in many ways
- No one really knows how many sensors will be accessed at one time (or reporting to a higher level service), or how often they will be accessed
- Security isn't of concern YET except for job data

Monitoring Systems (2)

- Line between monitoring system and higher level services isn't always clear
 - Archiving
 - Summary statistics
 - Predictions
 - Error detection
 - Alarms/notification

OUTLINE

- Grid Monitoring and Use Cases
- MDS4
 - Index Service
 - Trigger Service
 - Information Providers
- Deployments
 - Metascheduling data for TeraGrid
 - Service failure warning for ESG
- Performance Numbers

What is MDS4?

- Grid-level monitoring system used most often for resource selection
 - Aid user/agent to identify host(s) on which to run an application
- Uses standard interfaces to provide publishing of data, discovery, and data access, including subscription/notification
 - WS-ResourceProperties, WS-BaseNotification, WS-ServiceGroup
- Part of the Globus Toolkit v4
- Functions as an hourglass to provide a common interface to lower-level monitoring tools

the globus alliance www.globus.org Information Users: Schedulers, Portals, Warning Systems, etc. WS standard interfaces for **GLUE Schema Attributes** subscription, (cluster info, registration, queue info, FS info) notification Cluster monitors (Ganglia, Hawkeye, Queueing systems Clumon, and (PBS, LSF, Torque) Nagios) Services (GRAM, RFT, RLS)

Www.globus.org MDS4 Uses Web Service Standards

- WS-ResourceProperties
 - Defines a mechanism by which Web Services can describe and publish resource properties, or sets of information about a resource
 - Resource property types defined in service's WSDL
 - Resource properties can be retrieved using WS-ResourceProperties query operations
- WS-BaseNotification
 - Defines a subscription/notification interface for accessing resource property information
- WS-ServiceGroup
 - Defines a mechanism for grouping related resources and/or services together as service groups

MDS4 Components

- Higher level services
 - Index Service a way to aggregate data
 - Trigger Service a way to be notified of changes
 - Both built on common aggregator framework
- Information providers
 - Monitoring is a part of every WSRF service
 - Non-WS services can also be used
- Clients
 - WebMDS
- All of the tool are schema-agnostic, but interoperability needs a well-understood common language

MDS4 Index Service

- Index Service is both registry and cache
- Subscribes to information providers
- Publishes (as resource properties)
 - Datatype and data provider info, like a registry
 - Last value of data, like a cache
- In memory default approach, DB backing store currently being developed to allow for very large indexes
- Soft-state registration
- Can be set up for a site or set of sites, a specific set of project data, or for user-specific data only
- Can be a multi-rooted hierarchy

Index Service Facts 1

- No single global Index provides information about every resource on the Grid
 - No person in the world is part of every VO!
 - Hierarchies or special purpose index's are common
 - Each virtual organization will have different policies on who can access its resources
- The presence of a resource in an Index makes no guarantee about the availability of the resource for users of that Index
 - Ultimate decision about whether to use the resources is left to direct negotiation between user and rsc
 - MDS does not need to keep track of policy information (something that is hard to do concisely)
 - Rscs do not need to reveal their policies publicly

Index Service Facts 2

- MDS has a <u>soft consistency model</u>
 - Published information is recent, but not guaranteed to be the absolute latest
 - Load caused by information updates is reduced at the expense of having slightly older information
 - Free disk space on a system 5 minutes ago rather than 2 seconds ago.
- Each registration into an Index Service is subject to <u>soft-state lifetime</u> management
 - All registrations has expiry times and must be periodically renewed
 - Index is self-cleaning, since outdated entries disappearing automatically

MDS4 Trigger Service

- Subscribe to a set of resource properties
- Evaluate that data against a set of preconfigured conditions (triggers)
- When a condition matches, email is sent to pre-defined address

Similar functionality in Hawkeye

Aggregator Framework

- General framework for building services that collect and aggregate data
 - Index and Trigger service both use this
- 1) Common interface implemention
 - Java class that implements an interface to collect XML-formatted data from information providers
 - Implements WS-RP and WS-N for query and subscription
- 2) Common configuration mechanism
 - Maintain information about which information providers to use and their associated parameters
 - Specify what data to get, and from where
- 3) Services are self-cleaning
 - Each registration has a lifetime
 - If a registration expires without being refreshed, it and its associated data are removed from the server

Information Providers

- Data sources for the higher level services (eg. Index, Trigger)
- WSRF-compliant service
 - WS-ResourceProperty for Query source
 - WS-Notification mechanism for Subscription source
- Other services/data sources
 - Executable program that obtains data via some domain-specific mechanism for Execution source.

Information Providers: Cluster and Queue Data

- Interfaces to Hawkeye, Ganglia, CluMon
 - Not WS so these are Execution Sources
 - Basic host data (name, ID), processor information, memory size, OS name and version, file system data, processor load data
 - Some condor/cluster specific data
- Interfaces to PBS, Torque LSF queue system
 - Queue information, number of CPUs available and free, job count information, some memory statistics and host info for head node of cluster

the globus all

"Information Providers: GT4 Services

- Every WS built using GT4 core
 - ServiceMetaDataInfo element includes start time, version, and service type name
- Reliable File Transfer Service (RFT)
 - Service status data, number of active transfers, transfer status, information about the resource running the service
- Community Authorization Service (CAS)
 - Identifies the VO served by the service instance
- Replica Location Service (RLS)
 - Note: not a WS
 - Location of replicas on physical storage systems (based on user registrations) for later queries

WebMDS User Interface

- Web-based interface to WSRF resource property information
- User-friendly front-end to the Index Service
- Uses standard resource property requests to query resource property data
- XSLT transforms to format and display them
- Customized pages are simply done by using HTML form options and creating your own XSLT transforms
- Sample page:
 - http://mds.globus.org:8080/webmds/webmds?info=indexinfo&xsl=servicegroupxsl

s WS-ServiceGroup has 4	direct entries, 33 in wl	hole hierarchy.	

esource Type	ID	Information	
Unknown	128.9.72.106	$Aggregator\ entry\ with\ no\ content\ from\ \texttt{https://128.9.72.106:8443/wsrf/services/ReliableFileTransferFactoryService}.$	<u>detail</u>
GRAM	128.9.72.106	0 queues, submitting to 0 cluster(s) of 0 host(s).	detail

128.9.72.106 0 queues, submitting to 0 cluster(s) of 0 host(s). GRAM

erviceGroup 128.9.72.140 This WS-ServiceGroup has 11 direct entries, 29 including descendants.

erviceGroup 128.9.72.178 This WS-ServiceGroup has 4 direct entries, 4 including descendants.

128.9.72.178 0 active transfer resources, transferring 0 files. RFT 40.55 GB transferred in 173769 files since start of database.

128.9.72.178 0 queues, submitting to 1 cluster(s) of 10 host(s). GRAM **GRAM** 128.9.72.178 1 queues, submitting to 1 cluster(s) of 10 host(s).

128.9.72.178 2 gueues, submitting to 1 cluster(s) of 10 host(s). GRAM

128.9.72.106 1 gueues, submitting to 0 cluster(s) of 0 host(s). **GRAM** 128.9.72.106 0 active transfer resources, transferring 0 files. RFT

8.28 GB transferred in 8595 files since start of database. 128.9.64.179 This WS-ServiceGroup has 4 direct entries, 4 including descendants. erviceGroup 128.9.64.179 1 gueues, submitting to 1 cluster(s) of 15 host(s). **GRAM**

128.9.64.179 5 queues, submitting to 1 cluster(s) of 15 host(s). GRAM 128.9.64.179 0 active transfer resources, transferring 0 files. RFT

63.16 GB transferred in 108704 files since start of database. **GRAM** 128.9.64.179 0 queues, submitting to 1 cluster(s) of 15 host(s).

128.9.128.168 0 queues, submitting to 0 cluster(s) of 0 host(s).

128.9.128.168 0 active transfer resources, transferring 0 files.

128.9.128.168 This WS-ServiceGroup has 3 direct entries, 3 including descendants.

10.52 GB transferred in 23489 files since start of database.

erviceGroup

GRAM **RFT**

erviceGroup 128.9.72.106 This WS-ServiceGroup has 3 direct entries, 3 including descendants. 128.9.72.106 0 queues, submitting to 0 cluster(s) of 0 host(s). **GRAM**

Options 1

Ö uk Ö train

→ Go booking

detail

Internet

Any questions before I walk centre through two current deployments?

- Grid Monitoring and Use Cases
- MDS4
 - Index Service
 - Trigger Service
 - Information Providers
- Deployments
 - Metascheduling Data for TeraGrid
 - Service Failure warning for ESG
- Performance Numbers

Working with TeraGrid

- Large US project across 9 different sites
 - Different hardware, queuing systems and lower level monitoring packages
- Starting to explore MetaScheduling approaches
 - GRMS (Poznan)
 - W. Smith (TACC)
 - K. Yashimoto (SDSC)
 - User Portal
- Need a common source of data with a standard interface for basic scheduling info

Cluster Data

- Provide data at the subcluster level
 - Sys admin defines a subcluster, we query one node of it to dynamically retrieve relevant data
- Can also list per-host details
- Interfaces to Ganglia, Hawkeye, CluMon, and Nagios available now
 - Other cluster monitoring systems can write into a .html file that we then scrape

Cluster Info

- UniqueID
- Benchmark/Clock speed
- Processor
- MainMemory
- OperatingSystem
- Architecture

- Number of nodes in a cluster/subcluster
- TG specific Node properties
- StorageDevice
 - Disk names, mount point, space available

Data to collect: Queue info

- Interface to PBS (Pro, Open, Torque), LSF
- LRMSType
- LRMSVersion
- DefaultGRAMVersion and port and host
- TotalCPUs
- Status (up/down)
- TotalJobs (in the queue)

- RunningJobs
- WaitingJobs
- FreeCPUs
- MaxWallClockTime
- MaxCPUTime
- MaxTotalJobs
- MaxRunningJobs

How will the data be accessed?

- Java and command line APIs to a common TG-wide Index server
 - Alternatively each site can be queried directly
- One common web page for TG
 - http://snipurl.com/j24r
- Query page is next!

Status

- Currently have a demo system up
 - Queuing data from SDSC and NCSA
 - Cluster data using CluMon interface at NCSA
 - Basic WebMDS interface
- Being deployed more widely for TeraGrid this week
- General patch for 4.0.1 deployments should be available soon – let me know if you're interested!

ESG use of MDS4 Trigger Service

- Need a way to notify system administrators and users what the status of their services are
- In particular, interested in
 - Replica Locatoin Service (RLS)
 - Storage Resource Manager service (SRM)
 - OpenDAP
 - Web Server (HTTP)
 - GridFTP fileservers

the globus alliance www.globus.org

Trigger Service and ESG Cont.

- The Trigger service periodically checks to see if services are up and running
- If a service is gone down or is unavailable for any reason, an action script is executed
 - Sends email to administrators
 - Update portal status page
- Been in use for over a year (used GT3 version previously)

ESG Current Status

Updated: Fri Nov 4 12:00:01 2005 MDT

	LANL	LBNL	NCAR	ORNL
MSS/HPSS		9	*	*
SRM		*	*	8
RLS		*	3	*
OpenDAPg			3	
GridFTP server			3	
HTTP server	2			

(Explanation of current status)

OUTLINE

- Grid Monitoring and Use Cases
- MDS4
 - Index Service
 - Trigger Service
 - Information Providers
- Deployments
 - Metascheduling Data for TeraGrid
 - Service Failure warning for ESG
- Performance Numbers

MDS4 Stability

Vers.	Index Size	Time up (Days)	Queries Processed	Query Per Sec.	Round- trip Time (ms)
4.0.1	25	66+	81,701,925	14	69
4.0.1	50	66+	49,306,104	8	115
4.0.1	100	33	14,686,638	5	194
4.0.0	1	14	93,890,248	76	13
4.0.0	1	96	623,395,877	74	13

Scalability Experiments

- MDS index
 - Dual 2.4GHz Xeon processors, 3.5 GB RAM
 - ◆ Sizes: 1, 10, 25, 50, 100
- Clients
 - 20 nodes also dual 2.6 GHz Xeon, 3.5 GB RAM
 - ◆ 1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, 256, 384, 512, 640, 768, 800
- Nodes connected via 1Gb/s network
- Each data point is average of 8 minutes
 - Ran for 10 mins but first 2 spent getting clients up and running
 - Error bars are SD over 8 mins
- Experiments by Ioan Raicu, U of Chicago, using DiPerf

the globus alliance www.yllobus.ogS4 Response Time

Index Maximum Size

Heap	Approx. Max.	Index	
Size (MB)	Index Entries	Size (MB)	
64	600	1.0	
128	1275	2.2	
256	2650	4.5	
512	5400	9.1	
1024	10800	17.7	
1536	16200	26.18	

Performance

- Is this enough?
 - We don't know!
 - Currently gathering up usage statistics to find out what people need
- Bottleneck examination
 - In the process of doing in depth performance analysis of what happens during a query
 - MDS code, implementation of WS-N, WS-RP, etc

(These numbers are in an HPDC submission)

Summary

- MDS4 is a WS-based Grid monitoring system that uses current standards for interfaces and mechanisms
- Available as part of the GT4 release
 - Currently in use for resource selection and fault notification
- Initial performance results aren't awful we need to do more work to determine bottlenecks

Where do we go next?

- Extend MDS4 information providers
 - More data from GT4 WS
 - GRAM, RFT, CAS
 - More data from GT4 non-WS components
 - RLS, GridFTP
 - Interface to other data sources
 - Inca, GRASP
 - Interface to archivers
 - PinGER, NetLogger
- Additional scalability testing and development
- Additional clients

Other Possible Higher Level Services

- Archiving service
 - The next high level service we'll build
 - Looking at Xindice as a possibility
- Site Validation Service (ala Inca)
- Prediction service (ala NWS)
- What else do you think we need?

Contributing to MDS4

- Globus is opening up it's development environment – similar to Apache Jakarta
- MDS4 will be a project in the new scheme
- Contact me for more details
 - jms@mcs.anl.gov
- http://dev.globus.org

Thanks

- MDS4 Team: Mike D'Arcy (ISI), Laura Pearlman (ISI),
 Neill Miller (UC), Jennifer Schopf (ANL)
- Students: Ioan Raicu, Xuehai Zhang
- This work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under contract W-31-109-Eng-38, and NSF NMI Award SCI-0438372. This work also supported by DOESG SciDAC Grant, iVDGL from NSF, and others.

For More Information

- Jennifer Schopf
 - Jms@mcs.anl.gov
 - http://www.mcs.anl.gov/~jms
- Globus Toolkit MDS4
 - http://www.globus.org/toolkit/mds
- Monitoring and Discovery in a Web Services
 Framework: Functionality and Performance of the Globus Toolkit's MDS4
 - http://www.mcs.anl.gov/~jms/Pubs/ mds4.hpdc06.pdf